關聯預測模型建立在一個額外泛型的身份上 資料集,其中每個標識包含多個圖像 變化較大內部個人。考慮兩個時 面孔下顯著不同的設置 (例如,非額葉的英文翻譯

關聯預測模型建立在一個額外泛型的身份上 資料集,其中每個標識包含多個圖

關聯預測模型建立在一個額外泛型的身份上 資料集,其中每個標識包含多個圖像
變化較大內部個人。考慮兩個時 面孔下顯著不同的設置 (例如,非額葉 和額葉),我們第一次"關聯"一輸入人臉都 從設置的泛型標識日期的身份。使用關聯的 面孔,我們 generatively"預測"的外觀 一個輸入下的另一個輸入的臉上,設置工作面或 discriminatively"預測"可能性是否兩個輸入
面臨來自同一個人不是是。我們稱這兩個提議
作為"外觀-預測"的預測方法和
"可能性預測"。通過利用額外的資料 set
("memory") 和"准預測"模型中,個人才能
變化可以有效地處理。
0/5000
原始語言: -
目標語言: -
結果 (英文) 1: [復制]
復制成功!
Associated forecasting model based on an additional data on the identity of the generic collection, which contains more than one image for each identity
large variation within individuals. Face when considering two dramatically different settings (for example, non-frontal and frontal lobe), the first time we "connected" type face are identified from a set of generic date status. Using the associated faces, our generatively "prediction" appearance entered under another type of face, set the face or discriminatively "prediction" possibilities are two input
faces is not from the same person. We call these two proposed
As "appearance-project" prediction method and
"probability forecasts." Through the use of extra data set
("memory") and the "prediction" model, the individual talent
change can be effectively addressed.
正在翻譯中..
結果 (英文) 2:[復制]
復制成功!
Associated predictive model based on the identity of an additional generic data sets, each of which contains multiple images to identify
changes in the larger internal individuals. When considering the two faces under significantly different settings (for example, non-frontal and frontal), we first "association" status of an input from a set of generic human face identification date. Associated with the use of the face, we generatively "predict" the appearance of an input to another input face, set face or discriminatively "predict" whether the possibility of the two input
faces from the same person is not yes. We call these two proposals
as the "Appearance - predict" forecasting methods and
"the possibility of prediction." By using additional data set
("Memory") and "quasi-prediction" model, individuals can
effectively deal with change.
正在翻譯中..
結果 (英文) 3:[復制]
復制成功!
The connection forecast model establishes in a status of extra pan-the material collection, each marking contains many image
change big interior individuals. When considers two under face remarkable different establishment (e.g., non-temporal lobe and temporal lobe), our first time " connection " an input face from establishment the status of pan-marking date. Face of use connection, our generatively " forecast " on outward appearance input the face under of another input, establishes the working surface or discriminatively " forecast that " possible whether two input
faced with from the same person is not. We said that these two proposed
As " outward appearance - forecast "the forecast technique and
" possibility forecasts". ("Memory") and " forecasts " in model through use extra material set
certainly, individual can the
change be able effectively to process.
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: